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SIMULATION OF A LUNAR GRADIOMETER MISSION

P. Argentiero
R. Garza-Robles

ABSTRACT

A Lunar Gradiometer mission involves the mounting of

a gradiometer on a satellite which is in a low, polar,

and circular lunar orbit. This paper presents the re-

sults of a numerical simulation of the mission. It is

shown that if the satellite is in a 50 km orbit, 10 and 20

gravity anomalies may be estimated with accuracies of

12 mgal and 1 mgal respectively. At a 100 km altitude,

2* gravity anomalies can be estimated with an accuracy

of 12 mgal. These results assume a rotating type gradiom-

eter with a . 1E accuracy. The results can be readily

.scaled to reflect another accuracy level.

iii



CONTENTS

Page

ABSTRACT ..................... ..... iii

INTRODUCTION ........................ 1

ORTHOGONALITY PROPERITIES OF GRAVITY ANOMALIES
IN GRADIOMETER DATA .............. ..... 3

RESULTS . . . . . . . . . . . . . . . . . . . . . . . . .. . 12

CONCLUDING REMARKS .................... 20

REFERENCES ................... ...... . 21

ILLUSTRATIONS

Figure Page

1 Gradiometer Output Perturbation Due to 1 mgal
Perturbation of 2 * Lunar Gravity Anomaly . ...... 9

2 Gradiometer Output Perturbation Due to 1 mgal
Perturbation of 20 Lunar Gravity Anomaly . ...... 10

3 Alias Map for 2 Gravity Anomalies . ......... 13

4 Alias Map for 2* Gravity Anomalies . ......... 14

5 Accuracy of 1°by 1" Mean Free Air Gravity Anomaly Estimates
vs. Data Block Size for Various Estimation Block Sizes . 16

6 Accuracy of 2 by 20 Mean Free Air Gravity Anomaly
Estimates vs. Data Block Size for Various
Estimation Block Sizes ................ 17

7 Accuracy of 20 by 20 Mean Free Air Gravity Anomaly
Estimates vs. Data Block Size for Various
Estimation Block Sizes . ............... 18

iv



S SIMULATION OF A LUNAR GRADIOMETER MISSION

INTRODUCTION

For the purpose of estimating the lunar gravity field, the output of a gradiometer

has advantages over satellite perturbation data. The gradiometer, since it can

measure second derivatives of the lunarpotential field, will be sensitive to the

density variations of the Moon's outer crust which are the source of the signifi-

cant high frequency components of the lunarpotential field. These high frequency

effects tend to be smoothed out in satellite perturbation data.

Regardless of what data type one employs there are difficulties in using standard

parameter estimation techniques to determine a global and detailed lunar gravity

field. The essence of these difficulties is that a large number of parameters

must be estimated. For instance, if features of the lunar potential as small as

20 are to be recovered and if the standard spherical harmonic expansion of the

lunarpotential field is used as a parameterization, a full set of coefficients to

degree and order 90 is required. This implies the estimation of over 8000param-

eters. In general it is not possible to simultaneously estimate such large param-

eter sets. In practice, in order to use standard estimation techniques to recover

lunarpotential fine structure from gradiometer data, it will be necessary to ad-

just small subsets of parameters while constraining other parameters to a priori

values. But unless the parameterization exhibits a certain orthogonality property

in the data set the effect is that the uncertainties in the unadjusted terms will

badly corrupt the estimates of the adjusted terms. If spherical harmonic coef-

ficients are utilized the estimation problem can be decomposed into estimation

problems of smaller dimensionality only if the gradiometer data set is globally

distributed. This implies a heavy computational load. A parameterization of

the lunarpotential field is desired in which the individual parameters exhibit a

localized observability pattern in gradiometer data. With such a parameteriza-

tion it would be possible to accurately estimate small subsets of parameters by

processing localized blocks of gradiometer data. The mean free air gravity

anomaly - Stokes' function parameterization of a gravity field [1] has been shown

to possess a measure of orthogonality in local blocks of altimeter data [2]1. In

[3] the observability of gravity anomalies in gradiometer data was shown but the

orthogonality property was assumed rather than demonstrated. To be realistic

one must recognize that the orthogonality is not perfect and that only the esti-

mates of gravity anomalies which are a sufficient distance from unadjusted grav-

ity anomalies will be of value. This implies that gravity anomalies should be

estimated in blocks with the estimates of anomalies in a sufficiently small inner

core accepted as valid and the rest rejected due to aliasing. To obtain an intelli-

gent estimation strategy for estimating lunar gravity anomalies from gradiometer
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data it is necessary to determine for a given data block size the relationship be-
tween the accuracy with which a given anomaly is estimated and its distance from
the nearest unadjusted anomaly.

In this report lunar gradiometer missions at 50 km and 100 km altitude are sim-
ulated and optimal data block and estimation block sizes for determining 10 and
20 lunar gravity anomalies are obtained by means of covariance analysis. A
rotating type gradiometer as described in [4] is assumed mounted on a lunar
polar satellite and to have an accuracy of. 1 E, (1 E = 10 - 9 gal/cm). The results
can be readily scaled to reflect any other accuracy level.
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ORTHOGONALITY PROPERTIES OF GRAVITY ANOMALIES IN

GRADIOMETER DATA

The rotating gradiometer is an instrument which senses gravity gradients in a

given plane. If the instrument is on board a satellite we take that plane to be the

orbital plane of the satellite. Define a local satellite centered coordinate system

(I, I2v 13) where the I, unit vector is pointing northward, the 12 unit vector is

pointing eastward, and the 13 unit vector is perpendicular to the plane spaned by

I and 12 and is directed outward from the moon. If the satellite on which the

rotating gradiometer is mounted is in a polar orbit, the sensing plane of the in-

strument always coincides with the plane spanned by the 12 and 13 unit vectors.
This assumption considerably simplifies the following mathematical development.

The lunarpotential field can be represented as

W = U+T (1)

where U is a reference lunarpotential generally defined by a low degree and order

spherical harmonic expansion of a nominal field and T is the so-called anomalous

potential. The anomalous potential represents the high frequency part of the

field and we are primarily interested in the portion of the gradiometer output

which is due to T. Assuming that the satellite is in a polar orbit, the additive

component of the rotating gradiometer signal amplitude which is due to the anom-

alous potential T is

AMP a2T(r,OX) 1 aIT(rX21+4 [i a2 T(r,O,),)h (2)AMP = I - I +4 r J (2)
ar2  2  a2 . ara _

where r, 0, and X have the usual spherical coordinate interpretations and where

the derivatives are evaluated at the satellite position [3].

The anomalous potential T at any point above the surface of the moon can be ex-

pressed by means of the discrete form of Stokes' formula as

T(r, , X) = gi(', X) S(r, 0, X, 0', X) cos (0) A i AXi  (3)

where 6g i (0!, X) is a mean gravity anomaly over a block centered at latitude

0'; and longitude X and referenced to a equipotential surface defined by the

nominal field U. The expression cos (4k) Ao4 AX' represents the area of the

block on which the ith gravity anomaly is defined and S(r, 0, X, 0', X) is Stokes'
function given in [ 3] by

S(r, , X, ', ') = t + 1 - 3 D - t cos ( ) ( + 3Qn 2 (4)
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where

4' = cos- 1 [sin (0) sin (0') + cos (0) cos (0') cos (X' - X)]

R
t =

r

D = (1 - 2 t cos () + t2 )V2

where R is the mean radius of the moon. The functional relationship between
the anomalous part of the gradiometer output and a globally distributed set of
gravity anomalies is obtained from Equations 2 and 3 as

A = [C \-2 S(r,,, ,X)r) 1 a 2 S(r,4,X,(,h)2 1 a2 S(r,,X,,X ) 5)

M ar2  r2 302 r arb (5)

cos (0k) A0 AXi &g( ,)

Equation 5 shows that if the discrete form of Stokes' formula is valid, the gradi-
ometer output is a linear function of a global distribution of gravity anomalies.
Hence standard parameter estimation techniques should be applicable to the
problem of determining gravity anomalies from gradiometer data. To see how
these techniques are applied it is useful to employ matrix notation. Let y be a
vector of the anomalous components of gradiometer readings. Assume that the
ith component of ' is the anomalous gradiometer reading obtained when the satel-
lite's position is given in spherical coordinates as (ri, Oi, Xi). Let'g be a vector
of numerical values of a global set of gravity anomalies. The jth component of
' is the numerical value of the gravity anomaly centered at latitude 0 and longi-
tude X'. The functional relationship between ' and ' is expressed as

ey = A (6)

where A is a matrix the number of whose rows is the number of observations
and the number of whose columns is the number of gravity anomalies. The ele-
ment in the ith row and jth column of A is

A(IJ) ([ 2 S(r ' i 'X,'~j ' )  1 a2 S(ri ii,, 2 +4 a2S(riI. 2I

ar -r a-i L ar i / (7)

cos (@) Aj AX!

Equation 7 provides a linear equation of condition and in a standard minimum
variance fashion ' could be estimated from observations of '. In order for Equa-
tion 7 to be correct (correct, that is, assuming that the approximations inherent
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in the discrete form of Stokes' formula are valid) the gravity anomalies in the

array must cover the moon's surface. Computational considerations constrain

us to choose a region such that the number of gravity anomalies to be estimated

does not exceed a few hundred. In effect gravity anomalies outside of this re-

gion are assumed to be zero. To see precisely what happens when this assump-
tion is made postulate the ' array of Equation 6 to be defined over the globe,
and write

where

g, = gravity anomalies to be adjusted in a standard minimum variance
filter and

g2 = gravity anomalies assumed to be zero and thus left unadjusted by the
minimum variance filter.

Then Equation 6 can be written

S= A 1 , + A2 2  (8)

where A1 and A2 are respectively the variational matrices of - with respect to

g and Z2

The gradiometer output provides direct observations y of - with statistics

y = + v, E (v)= , E(vv T ) = Q  (9)

The gravity anomalies 2 for computational reasons are assumed to be zero but
the actual values of gravity anomalies in the region of the sphere which is ignored
have a certain distribution about zero. We assume

E (2) = , E ( 2  )= P2 (10)

When the values of g2 are assumed to be zero the minimum variance estimate

of-l becomes

, = (A Q-1 A1)- AT Q - l  (11)

Define the covariance matrix of the estimator given by Equation 11 as

P = E([I -ZI] [1 -g ]T )  (12)
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From Equations 9, 10, and 11 we obtain

1-gl = (A Q-1 A1  (-Aly Q-1A 2  + AT Q-lv) (13)

Equation 13 yields

P= (ATQ-1 1A)' +(ATQ-1A 1
)-1 ATQ-1A 2 P2AQ-l A (ATQ'A 1 )-1 (14)

Assume that the data noise is uncorrelated and that each data point has the same
variance. Then

Q = Ioo (15)

where I is the identity matrix and a2 is the common variance of the data. On the
assumption that the values of the unadjusted gravity anomalies are independently
distributed, the covariance matrix P 2 of '2 can be written as

2
02 0

P2 0 (16)

2
n2

where n 2 is the number of unadjusted gravity anomalies and of is the second
moment about zero of the ith unadjusted gravity anomaly. Also define a matrix
K as

K = (AQ-1A 1)- ATQ- 1A 2  (17)

If n1 is the number of adjusted parameters, then K is of dimension nI by n2.
With these assumptions Equation 14 yields the following expression for the vari-
ance of the ith adjusted gravity anomaly

n
2

P(I, I) = E ( 3 ij uJ) 2  
(18)

j=o

where p 0 is the ith diagonal element of the matrix (AT A )-1 and

i, j = K (I, j), > 1 (19)
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Define the error sensitivity matrix as

S = i, , i = 1,2, ...., n J = 0, 1, 2, ...., n 2 (20)

And finally define the alias matrix as

L = So (.21)

where

00

01 0

- 02

S =  0 . (22)

n2

The alias matrix reveals much of the probability structure of the estimation pro-

cedure. From Equations 18, 20, 21 and 22 it can be seen that the standard devi-

ation of the i t h adjusted gravity anomaly is the root sum square of the terms in

the ith row of the alias matrix. The elements in the first column of the alias

matrix represent the R. S. S. contribution to the standard deviation of each esti-

mated parameter due to the data noise. The elements in the jth column, j > 2

represent the R. S. S. contribution to the standard deviation of each estimated

parameter due to the j - 1 st unadjusted parameter. These terms are called the

aliasing contributions to the uncertainty in the adjusted parameters due to the

uncertainty of the j - 1st unadjusted parameter. Notice that the aliasing con-

tributions due to the jth unadjusted parameter are proportional to the standard

deviation of the j th parameter.

DE FINITION

In a given estimation process the ith estimated parameter is

said to be orthogonal with respect to the jth unestimated

parameter if the aliasing contribution to the ith estimated

parameter due to the uncertainty of the jth unestimated param-

eter is zero. It will be seen that the relation is symetric in

the sense that if one parameter is orthogonal with respect to

another and if they are interchanged within the adjusted and

unadjusted .modes, they are again orthogonal.

To see the implications of the orthogonality relationship we need a more reveal-

ing representation of the aliasing terms. Notice that the first term on the right

side of Equation 14 is the covariance matrix of the estimation process under the

7



assumption that the unadjusted parameters are perfectly known. This covariance
matrix gives the uncertainty of the estimates due only to the data noise. Define
the so-called "noise only" covariance matrix as

P = (AT Q-1 A1)-1 (23)

Next observe that the elements in the ith row and jth column of respectively A
and A 2 are the partial derivatives of the ith data point with respect to the j th ad-
justed parameter and the partial derivative of the ith data point with respect to
the jth unadjusted parameter. The aliasing contribution to the ith adjusted param-
eter due to the jth unadjusted parameter can be written as

I m .... ay

L(I,j + 1) = P(I, k) - Q-1(, ) (24)
k = Il= i3 I(k) ag (j)

where m is the number of data points. If the estimates of the adjusted param-
eters are relatively uncorrelated in the noise only covariance matrix, Equation
24 can be approximated by

m

L(I,j + 1) = P(I, I) 1Q-( (2,I) 2) ( (25)

From Equation 25 we see that the aliasing contribution is symetric in its argu-
ments and this implies the symetry of the orthogonality relationship.

A sufficient condition for the left side of Equation 25 to approximate zero is for
the observability patterns of l, (1) and g2(0) in the data to be virtually nonover-
lapping. Figures 1 and 2 demonstrate that the perturbation of a gradiometer
observation due to a I mgal perturbation of a gravity anomaly rapidly attenuates
with increasing spherical radius. Hence if the grids on which', (1) and '2(j) are
defined are sufficiently separated, the orthogonality relationship would be effec-
tively satisfied and the estimate of ,(I) would experience no aliasing from the
uncertainty of W2(j). Conversely, if the grid on which l, (1) was defined were in
close proximity to grids whose gravity anomalies were unadjusted, one would
expect serious aliasing of the resultant estimate.

It should be clear then, that if the gravity anomalies are estimated in a block the
outer layers of the block contain gravity anomalies whose estimates will be badly
aliased by the adjacent unadjusted parameters. It will be necessary to discard
these estimates. But the gravity anomalies in a sufficiently small inner core of
the block may be adequately separated from the unadjusted parameters to be ef-
fectively orthogonal with respect to them. The estimates of these terms

8
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presumably will be of sufficient accuracy that they can be accepted. In effect,
for every block of gravity anomalies that we intend to estimate it will be neces-
sary to construct of "buffer zone" several layers deep of gravity anomalies which
surround the block. The new and larger block of gravity anomalies must be
simultaneously estimated and then the estimates of gravity anomalies in the buf-
fer zone must be rejected due to aliasing. To design an intelligent data process-
ing procedure for a lunar gradiometer mission it is necessary to know the rela-
tionship between the depth of the buffer zone and the accuracy of the estimation
procedure. This relationship will vary with grid size, data block size, and satel-
lite altitude. The most efficient way to study the relationship is to utilize covar-
iance analysis techniques to generate alias matrices for several situations and
to attempt generalizations from the results. This is accomplished in the next
section.
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RESULTS

Assuming a satellite altitude of approximately 100 km and that a gradiometer
reading is obtained every 15 seconds, a dense globally distributed set approxi-
mately 86, 000 gradiometer measurements are obtained within 15 days. In the
low latitudes the sublunar points of the satellite at the measurement times form
a grid on the moon of 75 degrees latitude by one degree longitude. All our simu-
lations rely on this assumption concerning the data distribution. In doing so we
eliminate the dynamical aspect of the problem and thus the aliasing effect of or-
bit determination and attitude determination errors are not included in our
results.

,Ms mentlonu- IU L LnLt r. -UUUcIUI L reaL Ubii for 1mpLoy111 IjjaviLy ianoiU-ies to

describe lunarpotential fine structure is the possibility of successfully estimat-
ing local blocks of gravity anomalies in local blocks of gradiometer data. To
investigate this possibility we focus attention on the estimation accuracy of a
single gravity anomaly as a function of the number of adjacent gravity anomalies
which are simultaneously adjusted and the quantity of data which is used in the
estimation. We define the estimation block to be a block of gravity anomalies
centered at the gravity anomaly in question and square in the sense that the block
subtends the same number of degrees longitude as latitude. We assume that all
the gravity anomalies in the estimation block are simultaneously adjusted in a
given estimation procedure. As we have defined it, estimation blocks can only
be incremented by integral numbers of twice the gravity anomaly block size.
For 20 gravity anomalies, for instance, possible estimation block sizes are 20,
60, 90, 100, 140, etc.

The data block is defined as a gradiometer data set which was obtained when the
sublunar points of the satellite were within a square region of the lunar surface
centered at the gravity anomaly in question. For a given estimation block size
the accuracy of a gravity anomaly estimate is not necessarily a monotone func-
tion of the data block size. This may at first be puzzling since in general one
expects more data to yield better estimates. An explanation can be obtained by
noticing that for a given estimation block the covariance matrix of the set of es-
timated gravity anomalies is given by Equation 14 as the sum of a matrix which
is dependent only on data uncertainty and a matrix which represents the aliasing
effects from the unadjusted parameters. With increasing data blocks the ele-
ments of the first matrix must decrease but in general the elements of the matrix
which conveys the aliasing effects will increase. This effect can be shown gra-
phically by means of so-called aliasing maps. To obtain the aliasing maps of
Figures 3 and 4 we simulate in a covariance mode a situation in which we de-
scribe lunarpotential fine structure by means of 20 by 20 gravity anomalies and
we assume gradiometer data with an accuracy of . 1E. In Figure 3 we mapped

12
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the R. S. S. contribution in mgals to the uncertainty in the estimate of the gravity

anomaly defined on the blank grid element in the middle of the graph when the

adjacent gravity anomalies are assumed to be in an unadjusted mode and to have

an a priori uncertainty of 75 mgals. The data block as represented by the shaded

area of the graph is 50 on a side. The satellite altitude was 50 km. Notice that

the aliasing contributions decrease with the distance between an unadjusted param-

eter and the estimated parameter thus demonstrating the inherent orthogonality

properties of gravity anomalies in gradiometer data. In Figure 4 the data block

size has been increased to 200 and the aliasing effect of adjacent unadjusted grav-

ity anomalies is seen to be greater.

The choice of an intelligent data reduction strategy is obviously dependent on a

knowledge of the relationship between estimation accuracy and the choice of data

block size and estimation block size. A computer program was written which

computes the right side of Equation 14 for any given data reduction technique.

The program was used to investigate data reduction strategies. First an alti-

tude for the satellite was chosen and a gradiometer data block centered on a

chosen gravity anomaly was assumed. The data accuracy was assumed as . 1E.

A normal matrix for 400 gravity anomalies was formed. The chosen gravity

anomaly and gravity anomalies in successive layers surrounding the chosen

gravity anomaly were assumed to be in an adjusted mode and the rest were placed

in an unadjusted mode with uncertainties about zero of 75 mgal. The right side

of Equation 14 was computed and the resultant standard deviation in the estimate

of the chosen gravity anomaly was recorded. The estimation block size was in-

cremented by removing another layer of gravity anomalies from the unadjusted

to the adjusted mode and repeating the process. Figures 5 and 6 display the re-

lationship between estimates of 10 and 20 gravity anomalies and the choices of

data block size and estimation block size when the satellite is at an altitude of

50 km. Figure 7 displays the information when the satellite is at 100 km.

The graphs show that for 20 gravity anomalies an intelligent compromise be-

tween computational load and accuracy is achieved when a data block size of 50

is employed and the buffer zone of rejected gravity anomaly estimates is at least

two layers deep. The graphs show that when this strategy is followed and if the

satellite is in a 50 km orbit, 20 gravity anomalies can be estimated with an ac-

curacy of less than 1mgal. For 10 gravity anomalies the best strategy utilizes

a 10' data block size and a buffer zone of rejected gravity anomaly estimates

five layers deep. With this strategy 10 gravity anomalies can be estimated to

an accuracy of about 12 mgal. At an altitude of 100 km, 10 gravity anomalies

cannot be effectively estimated. Figure 7 shows that 20 gravity anomalies can

be estimated from a satellite height of 100 km to an accuracy of 12 mgal provided

a 200 data block size is utilized and provided that a buffer zone of rejected grav-

ity anomalies five layers deep is utilized.
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These results are dependent on the chosen value for the accuracy of the rotating

gradiometer. Since this choice is somewhat arbitrary it is useful to parametric-

ally represent gravity anomaly estimation accuracy as a function of gradiometeir
accuracy. Equation 18 implies that for a given choice of estimation block size

and data block size, the standard deviation of a gravity anomaly estimate is the

root sum square of a term which represents the aliasing effects of unadjusted

gravity anomalies and a term which is proportional to the standard deviation of

the rotating gradiometer observation. Assuming a 100 data block size and that

a given gravity anomaly is simultaneously estimated with all gravity anomalies

in the five adjacent layers, the estimation accuracy for 10 gravity anomalies at

an altitude of 50 km is given as a function of data accuracy as

o(10, 50km) = (1254402 + 0.342)/ (26a)

At the same altitude and for 50 data block size and for a buffer zone of rejected

gravity anomaly estimates two deep, accuracies of estimates of 20 gravity anoma-

lies are given as a function of data accuracy as

a(20, 50km) = (902 + 0. 3 6 ) "  (26b)

At a height of 100 km and assuming a data block size of 200 and a buffer zone of

rejected gravity anomalies five layers deep, the accuracies with which 20 gravity
anomalies can be estimated are given as a function of data accuracy as

0(20, 100km) = (1600002 + 1) 2  (26c)

Standard deviations on the left side of the above equations are in mgal and the
data standard deviation a on the right side is in Etvos units.
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CONCLUDING REMARKS

If a rotating gradiometer were placed on a satellite in a lunar polar orbit with an
altitude in the 50 km to 100 km range, a dense and globally distributed set of

gradiometer observations would be obtained in about 15 days. From this data set
it should be possible to determine a global set of lunar gravity anomalies. But
in order to keep the computational load within reasonable bounds it will be neces-

sary to estimate local blocks of gravity anomalies in local blocks of gradiometer
data. This report shows that if the satellite is flown at a 50 km altitude and if
the proper estimation strategy is employed, an instrument with a . 1E. accuracy

permits estimates of 1I and 2' gravity anomalies which are accurate to within
12 mgal and 1 mgal. When the satellite is flown at 100 km, 2* gravity anomalies
can be estimated" with n accuracy of 19 mrgal Eoqation 26 of this report per-

mit a scaling of these results to a data accuracy different from . 1E.
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